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Continuum model for growth with number conservation:
the dynamic critical exponent in the spherical limit
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Calcutta-700032, India
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Abstract. The continuum model describing growth with conservation of particle number
requires an infinite number of nonlinear terms for a one-dimensional substrate. By considering
an N -vector generalization of this growth model, we show that the dynamic critical exponent
z = 4 in the N → ∞ limit. This spherical limit provides the only universal exponents for
one-dimensional growth models with conserved particle number but non-conserved noise.

Deposition problems have been widely studied [1–10] in the last few years. The model
which we want to discuss here is that for an ideal molecular beam epitaxy (MBE) process.
Atoms from a hot source impinge perpendicularly upon the surface of a perfect substrate
(D-dimensional) with the growth of the resulting thin film occurring in a lattice-gas-solid-
on-solid fashion without any desorption and bulk vacancy/surface overhang formation.
Ideal MBE growth is a competition between the kinetic process of random deposition
and surface diffusion. The shot noise inherent in the random deposition process produces
kinetic roughness at the growth front whereas surface diffusion tends to smooth the growing
interface. Models to portray this competition were introduced independently by Wolf and
Villain [3] and Das Sarma and Tamborenea (DT) [4]. A continuum language description
involves finding the evolution equation for the height variableh(x, t), wherex is a D-
dimensional vector giving the location on the substrate. The evolution equation takes the
form

∂h

∂t
= F(h, x, t). (1)

Surface diffusion implies that the deposited particles generate a macroscopic currentj(x, t)

which is a vector parallel to the average surface direction. Local changes in the surface
height are caused by the non-zero surface currents and, since the total number of particles
remains unchanged during the diffusion process, the current obeys a continuity equation
making F = −∇ · j. With the surface current driven by the local chemical potential,
j = −∇µ. To find the chemical potential we note thatµ cannot depend onh, but is
determined by the number of bonds that need to be broken for surface diffusion. The
number of bonds is determined by the number of nearest neighbours and hence by the local
curvature, i.e. a negative curvature means fewer neighbours and a greater surface current.
Henceµ ∝ −∇2h and equation (1), on inclusion of the randomness in the incoming flux,
becomes

∂h

∂t
= −K∇4h + η (2)
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(it is assumed that processes contributing∇2h to the equation of motion are suppressed)
whereη is a random field specified by the correlation

〈η(x, t)η(x′, t ′)〉 = 2D0δ(x − x′)δ(t − t ′). (3)

The above linear equation (equation (2)) is easily analysed. To capture the essence of the
discrete DT model, however, nonlinear terms have to be included and the vital point to note
as pointed out by Krug [11] is that the DT model does not have tilt invariance. Thus the
nonlinear contribution to the chemical potential can be written as a power series in(∇h)

and we have, for the continuum version [12, 13] of the DT model,

∂h

∂t
= −K∇4h − ∇2

∑
n=1

λn(∇h)2n + η. (4)

Characterization of the form of the surface can be achieved by means of the two-point
correlation function,

C(k, ω) = 〈h(k, ω)h(k′, ω)〉
(2π)D+1δD(k + k)δ(ω + ω′)

(5)

and the response function

G(k, ω) = 1

δD(k + k′)δ(ω + ω′)

〈
∂h(k, ω)

∂η(k′, ω)

〉
. (6)

The scaling properties of the model are expressed in the form of the scaling laws

C(k, ω) = k−(2α+D+z)f
( ω

kz

)
G(k, ω) = k−zg

( ω

kz

)
. (7)

The two exponentsα andz describe the spatial and temporal scalings in the problem. The
exponents of the model shown in equation (4) were calculated by Lai and Das Sarma [5],
who considered all the terms except the first(λ1) to be irrelevant and the exponents were
found to be

z = 1
3(8 + D) α = 1

3(4 − D). (8)

At D = 1, equation (8) yieldsz = 3 andα = 1. The numerical simulation of the DT
model [14], however, showed that inD = 1, z = 4 andα ' 1.5 in striking contrast to
those inferred from equation (8). AtD = 2, on the other hand, the simulation results in
the DT model indeed agree with the results of equation (8). The solution to this puzzle
was speculated upon by Krug [11] who argued that inD = 1 all the nonlinear terms in
equation (4) will be relevant while inD = 2 only theλ1 term is relevant. This point of view
received further support when it was shown [15] that inD = 1 there is an infrared divergence
and the divergence gets stronger with increasingn as we consider the different nonlinear
terms in equation (4). A summation of the leading logs would change the exponents in a
non-universal manner but explicit values forα andz could not be obtained. In this work,
we generalize equation (4) for the scalarh to N -dimensional vectorsh and show that as
N → ∞, z → 4 exactly. This limit is universal.

The generalization of equation (4) will be carried out following the random coupling
approach of Kraichnan [16]. This is aN -vector generalization which is, as shown by Eyink
[17], equivalent to the approaches of Mou and Weichman [18] and Dohertyet al [19] in
the context of turbulence and KPZ-like equations, respectively. To implement Kraichnan’s
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scheme, we introduceN identical systems each with their own variableh and then introduce
the collective coordinates

hα = 1

N1/2

∑
n

e2π iα/n/Nh[n] (9)

wheren = 1, 2, . . . , N andα = 0, ±1, ±2, . . . ,±s, with 2s + 1 = N .
In terms ofh, equation (4) becomes

∂hα

∂t
= −K∇4hα − ∇2

∑
n

∑
β1,β2,...,βn−1

λn

Nn+1/2
(∇h)β1(∇h)β2(∇h)β3(∇h)β4

· · · (∇h)α−∑
i βi

+ ηα.

One now introduces the random coupling through a phase factor which makes the above
equation

∂hα

∂t
= −K∇4hα − ∇2

∑
n

∑
β1,βi ,...,βn−1

eiθβ1,β2,...,βn−1,α−∑
i βi

λn

Nn+1/2
(∇h)β1(∇h)β2

· · · (∇h)α−∑
i βi

+ ηα (10)

with 〈ηαηβ〉 = 2D0δαβδD(r − r′)δ(t − t ′) and the phase factorθβ1,β2,...,βn−1,α−∑
i βi

acquiring
a random value between 0 and 2π for every assignmentβ1, β2, . . . , βn−1.

In the limit of N → ∞, it is easy to check that diagrams such as those shown in
figure 1 vanish and the self-energy and correlation functions are given by the series shown
in figure 2, where, in the scaling limit, we have dropped the termD0|G(k, ω)|2 in C(k, ω)

and we will approximate the Greens function byG−1(k, ω) = −iω + 6(k, ω). Using
Lorentzian approximations forC(k, ω) andG(k, ω), and working to one-loop accuracy (i.e.
retaining only the one-loop diagrams of figure 2) we have, from the diagram for6(k, ω),

1 = 2
λ2

1C

03

∫
p+q=k

dDp

q2α+D
· p2q2(p · k)

pz + qz
(11a)

and from the diagram forC(k, ω)

1 = λ2
1C

03

∫
p+q=k

dDp

p2α+Dq2α+D

p2q2

pz + qz
. (11b)

Figure 1. Examples of diagrams which would yield the same logarithmic divergence as the
lowest order graphs inλ1 andλ2, but vanish in theN → ∞ limit. The line with a circle is a
correlator.

In writing down equations (11a) and (11b), the so-called mode coupling equations,
we have simply followed Bouchaud and Cates [20] (the finer points of non-Lorentzian
lineshapes and whether the zero frequency or the equal time part ofC(k, ω) is more
appropriate will not be considered here since they are irrelevant for the point we wish
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Figure 2. The self-consistent equation for the self-energy6(k, ω) and the correlation function
C(k, ω) in theN → ∞ limit. The double straight line is the dressed propagator and the double
wavy line is the dressed correlator.

to make). In equations (11a) and (11b), all momenta are actually scaled byk and hence we
can define the two numbers

I1 = 2
∫

p+q+1

dDp

q2α+D

p2q2(p · k)

pz + qz
(12a)

and

J1 =
∫

p+q=1

dDp

p2α+Dq2α+D

p2q2

pz + qz
. (12b)

From equations (11a) and (11b), we find I1 = J1, which yields a relation betweenα and
z. The overall scaling of the integrals givesα + z = 4 and, thus, one can determineα and
z. This method will work providedI1 andJ1 are finite numbers. Inspection ofI1 andJ1

shows that this is true forα < 1. Forα > 1, there is a low momentum singularity and the
integrals diverge. The model reachesα = 1 at D = 1 according to equation (8) and hence
the mode coupling result of equatingI1 andJ1 is going to run into difficulty atD = 1. To
study the behaviour asα → 1 our strategy will be to expand [21]

I1 = C1

1 − α
+ C2 + C3(1 − α) + · · · (13a)

and

J1 = D1

1 − α
+ D2 + D3(1 − α) + · · · . (13b)

Clearly,C1 = D1 = 2 and

C2 = 2
∫ ∞

−∞

dq

q

p2(1 − p)

pz + |1 − p|z − 2
∫ 1

−1

dq

q
(14)

while

D2 =
∫ ∞

−∞

dp

p|1 − p|
1

pz + |1 − p|z −
∫ 1

−1

dp

p
−

∫ 1

−1

dq

q
. (15)

If we are going to get results consistent with equation (8) then, forz = 3, we must
get C2 = D2. Explicit evaluation of the integrals show thatC2 = 8π/9

√
3 and

D2 = 4
√

3π/3 − (16/3) ln 2 6= C2. This shows that the continuum model of Lai and
Das Sarma [5] (λ1 6= 0 and all otherλ’s zero) will not yieldz = 3 for D = 1.
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To find the value ofz in the N → ∞ limit, we note that asD → 1(α → 1) all
the diagrams are important. Focusing on6, the second diagram in figure 2 has a leading
divergence of(1−α)−3 asα → 1 and hence is more important than the first diagram which
goes as(1 − α)−1. In fact the diagram corresponding toλn, i.e. the one with 2n internal
lines, yields a leading divergence which is(1 − α)−(2n−1) and hence the higher the value
of n, the stronger the contribution. One subtraction which removes the leading singularity
yields a term proportional to(1−α)−(2n−2), with the coefficient given by(n/2) ·C2, i.e. for
the diagram with 2n integral lines

In = n

(1 − α)2n−1
+ nC2/2

(1 − α)2n−2
+ · · · . (16)

Considering the correlation function at this level,

Jn = n

(1 − α)2n−1
+ D

(n)

2

(1 − α)2n−2
+ · · · (17)

whereD
(n)

2 is weaker than O(n). We must haveIn = Jn asn → ∞ for consistency and,
sinceD

(n)

2 is not of O(n), equation (16) shows that Ltn→∞nC2 has got to be finite and hence
z has to be such that

C2(z) = 0 (18)

which yieldsz = 4.
Thus, in the limitN → ∞ andD → 1 (the double limit is vital), the mode coupling

equations for6(k, ω) andC(k, ω) as expressed by the diagrammatic series in figure 2 are
exact and exploitation of the infrared divergence of the integrals, asD → 1, yields from self-
consistency the value of the dynamic scaling exponent. Note thatN → ∞ gives the series
andD → 1 implies that the integral withn → ∞ will dominate. This dominance assures
the universality ofz (the other exponent follows from hyperscaling to beα = 1.5). The
correction to the spherical limit induces corrections which depend upon the various coupling
constants. This brings in non-universal features which have been captured by Dasguptaet
al [22] in their numerical integration of systems similar to that given by equation (4). We
need to emphasize that the connection between the spherical limit considered here and the
N = 1 system is perhaps remote. However, the spherical limit helps establish universal
answers in a situation where universality seems to be hard to come by.

A brief comment on dimensionalities different from one is in order. ForD > 1, the
integrals such as those in equations (11a) and (11b) are finite and the self-consistent power
counting is appropriate. As can easily be checked from either of the above equations, this
consistency requiresα + z = 4 and, taken together with the hyperscaling relation, one gets
both the exponents of equation (8). The terms withλ2, λ3 etc are indeed irrelevant as can
be easily checked by writing the analogue of equation (11a) for the λ2 coupling alone.
Self-consistent power counting together with hyperscaling now yieldsz = 3 + 3

5(D − 1),
which is higher thanz = 3 + 1

3(D − 1) of equation (8) and thus asymptotically the effect
of λ2 can be ignored. ForD > 1, the exponents of Lai–Das Sarma hold. On the other
hand the regionD < 1 is certainly not approachable by the present method and indeed the
generalization of the DT model [2] to Cantor sets would be interesting.

A final comment concerns the observation of anomalous scaling by Plischkeet al [23],
Schroederet al [24] and Das Sarmaet al [14], where the system size enters the scaling
behaviour onD = 1. While our calculation of the exponentz has not addressed this issue,
it should be mentioned that our pinpointing of the reason of failure of the standard analysis
immediately clarifies the reason for this anomaly. As noted following equations (11a) and
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(11b), the integrals have an infrared divergence inD = 1 and hence they would require a
cut-off. This cut-off, which corresponds to a low momentum cut-off, is going to beξ−1 if
the correlation lengthξ(∼ t1/z) is small compared to the system sizeL andL−1 if L � ξ .
Thus finite size effects creep in through the infrared divergence inD = 1.

It is a pleasure to acknowledge stimulating conversations with Sankar Das Sarma, Chandan
Das Gupta and Jin Min Kim.
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